Empirical Research on Economic Inequality Estimating top income shares

Maximilian Kasy

Harvard University, fall 2015

Top 1\% income share in the US

Figure 8.8. The transformation of the top 1\% in the United States

Reproduced from Piketty (2014)

How are these estimated?

- Using income tax data (for numerator) and national accounts (for denominator)
- Available for top incomes since the introduction of income taxes
- For lower incomes: only since the expansion of income taxes
- These slides: Econometric issues
- Student presentation: Data issues, interpretation, etc.

The Pareto distribution

- Top incomes are very well described by the Pareto distribution
- Defined by:

$$
P(Y>y \mid Y \geq \underline{y})=(\underline{y} / y)^{\alpha_{0}}
$$

for $y \geq \underline{y}$, where $\alpha_{0}>1$.

- Corresponding density:

$$
\begin{aligned}
f\left(Y ; \alpha_{0}\right) & =-\frac{\partial}{\partial y} P(Y>y \mid Y \geq \underline{y}) \\
& =-\frac{\partial}{\partial y}(\underline{y} / y)^{\alpha_{0}}
\end{aligned}
$$

Questions for you

Calculate $f\left(Y ; \alpha_{0}\right)$

Answer:

$$
f\left(Y ; \alpha_{0}\right)=\alpha_{0} \cdot \underline{y}^{\alpha_{0}} \cdot y^{-\alpha_{0}-1} .
$$

Key property

- Pareto distribution satisfies:

$$
E[Y \mid Y \geq y]=\frac{\alpha_{0}}{\alpha_{0}-1} \cdot y
$$

- This is true for all y !!

Questions for you

Describe this equation in words.

- We can therefore calculate average incomes of the 1% as:

$$
\bar{y}^{1 \%}=\frac{\alpha_{0}}{\alpha_{0}-1} \cdot q^{99}
$$

where

$$
P\left(Y \leq q^{99}\right)=.99
$$

- To get top income shares, we need estimates of

1. α_{0}
2. q^{99}
3. National income for the denominator

- We will discuss α_{0}.
- Smaller $\alpha_{0} \Rightarrow$ fatter tails \Rightarrow more inequality, larger top income shares.

Key problem

- Standard technique to construct estimators: maximum likelihood.
- Find the number α_{0} which makes the observed incomes y_{1}, \ldots, y_{n} "most likely"

$$
\begin{aligned}
\widehat{\alpha}^{M L E} & =\underset{\alpha}{\operatorname{argmax}} \prod_{i=1}^{n} f\left(y_{i} ; \alpha\right) \\
& =\underset{\alpha}{\operatorname{argmax}} \sum_{i=1}^{n} \log \left(f\left(y_{i} ; \alpha\right)\right)
\end{aligned}
$$

- First order condition

$$
\frac{\partial}{\partial \alpha} \sum_{i=1}^{n} \log \left(f\left(y_{i} ; \alpha\right)\right)=0
$$

Questions for you

Solve this first order condition for the Pareto density.

Answer

- Log density of y_{i}

$$
\log \left(f\left(y_{i} ; \alpha\right)\right)=\log \left(\alpha\left(\underline{y} / y_{i}\right)^{\alpha} \cdot y_{i}^{-1}\right)=\log (\alpha)+\alpha \log \left(\underline{y} / y_{i}\right)-\log \left(y_{i}\right) .
$$

- First order condition

$$
\begin{aligned}
0 & =\frac{\partial}{\partial \alpha} \sum_{i=1}^{n} \log \left(\alpha\left(\underline{y} / y_{i}\right)^{\alpha} \cdot y^{-1}\right) \\
& =\sum_{i=1}^{n}\left(\frac{1}{\alpha}+\log \left(\underline{y} / y_{i}\right)\right)
\end{aligned}
$$

- Solving for α

$$
\begin{equation*}
\widehat{\alpha}^{M L E}=\frac{n}{\sum_{i} \log \left(y_{i} / \underline{y}\right)} . \tag{1}
\end{equation*}
$$

Additional problem

- Available data do not list actual incomes,
- just the number of people in different tax brackets $\left[y_{l}, y_{u}\right]$.
- Technical term: The data are "censored."
- For the Pareto distribution:

$$
\begin{align*}
P\left(Y \in\left[y_{l}, y_{u}\right] \mid Y \geq \underline{y}\right) & =P\left(Y>y_{l} \mid Y \geq \underline{y}\right)-P\left(Y>y_{u} \mid Y \geq \underline{y}\right) \\
& =\left(\underline{y} / y_{l}\right)^{\alpha_{0}}-\left(\underline{y} / y_{u}\right)^{\alpha_{0}} . \tag{2}
\end{align*}
$$

Likelihood for two tax brackets

- Data on N people with incomes above \underline{y}
- N_{2} people in the bracket $\left[y_{1}, \infty\right)$
- Probability of any given individual in the top bracket:

$$
p\left(\alpha_{0}\right)=P\left(Y>y_{l} \mid Y>\underline{y}\right)=\left(\underline{y} / y_{l}\right)^{\alpha_{0}} .
$$

- Probability of exactly N_{2} individuals in the top bracket:

$$
P\left(N_{2}=n_{2} \mid N=n ; \alpha\right)=\binom{n}{n_{2}} \cdot p\left(\alpha_{0}\right)^{n_{2}}\left(1-p\left(\alpha_{0}\right)\right)^{n-n_{2}} .
$$

- Remember the binomial distribution?

Questions for you

Calculate the maximum likelihood estimator for censored data

$$
\widehat{\alpha}^{M L E}=\underset{\alpha}{\operatorname{argmax}} P\left(N_{2}=n_{2} \mid N=n ; \alpha\right) .
$$

(Homework)

References

Atkinson, A. B., Piketty, T., and Saez, E. (2011). Top incomes in the long run of history. Journal of Economic Literature, 49(1):3-71.

Piketty, T. (2014). Capital in the 21st Century. Harvard University Press, Cambridge.

Atkinson, A. B. and Morelli, S. (2015). Chartbook of economic inequality.
http://www.chartbookofeconomicinequality.com/

