Empirical Research on Economic Inequality Equivalent variation and welfare

Maximilian Kasy

Harvard University, fall 2015

Welfare versus observables

Previous classes: distribution of observable variables

- (top) incomes, as found in tax records
- invitations to job interviews, as collected in audit experiments
- earnings, for union and non-union members
- incomes, again, and their relation to parental income
- Recall notions of individual welfare which *do not* correspond to these variables:
 - Utility
 - Capabilities
 - Opportunities

Price changes

- Suppose trade liberalization changes price of goods such as rice.
- Should affect different people differently:
 - Poor city dwellers consuming rice.
 - Small farmers producing for own consumption.
 - Larger farmers producing for the market.
 - ▶ ...
- Can we quantify the welfare impact of such a change in prices?

Deaton, A. (1989). Rice prices and income distribution in Thailand: a non-parametric analysis. The Economic Journal, pages 1–37.

Reminder: Utility

- General setup:
 - Choice set C_i
 - Utility function $u_i(x)$, for $x \in C_i$
 - Realized welfare

$$v_i = \max_{x \in C_i} u_i(x).$$

- Double role of utility
 - Determines choices (individuals choose utility-maximizing x)
 - Normative yardstick (welfare is realized utility)

Can we measure utility?

- Utility can not be observed.
- But we do observe choice sets and choices!
- Trick: change the question in two ways
 - 1. Changes in utility, rather than levels of utility.
 - Transfers of money that would induce similar changes of utility, rather than changes in utility itself.
- \blacktriangleright \Rightarrow Equivalent variation

The consumer problem

- Assume: Individuals choose consumption to maximize utility.
- Constraint: Expenses may not exceed income.
- Two consumption goods, good 1 and good 2, with prices p₁ and p₂
- Individuals i
- Income y_i
- Choose consumption x_i = (x_{1,i}, x_{2,i}) to maximize their utility u_i.
- Special case of general setup discussed 2 slides ago!

Consumer problem, continued

Utility maximization:

$$x_i(p, y_i) = \operatorname*{argmax}_x u_i(x),$$

subject to the budget constraint

$$x_{1,i}\cdot p_1+x_{2,i}\cdot p_2\leq y_i.$$

 Utility v_i that a household can achieve for given prices and income is equal to the utility of the chosen consumption bundle,

$$v_i(\rho, y_i) = u_i(x_i(\rho, y_i)).$$

Questions for you

- Write x_1 as function of x_2 under the budget constraint.
- Substitute this into the utility maximization problem.
- Calculate the first order condition for the utility maximization problem.

Solution

Budget constraint:

$$x_{1,i} = \frac{1}{p_1}(y_i - x_{2,i} \cdot p_2)$$

Substitute into utility maximization problem:

$$x_{2,i} = \underset{x_2}{\operatorname{argmax}} u_i \left(\frac{1}{p_1} (y_i - x_2 \cdot p_2), x_2 \right)$$

First order condition:

$$\frac{\partial}{\partial x_2} \left[u_i \left(\frac{1}{p_1} (y_i - x_2 \cdot p_2), x_2 \right) \right] = 0$$

Rewriting the first order condition:

$$\frac{\partial_{x_1}u_i(x_i)}{p_1} = \frac{\partial_{x_2}u_i(x_i)}{p_2}$$

"The ratio of marginal benefits to marginal costs has to be the same for both goods."

The welfare effect of changing prices

What is
$$\partial_{p_2} v_i(p, y_i) = \partial_{p_2} u_i(x_i(p, y_i))$$
?

Questions for you

Try to calculate this

- 1. using the chain rule,
- 2. substituting for $\partial_{p_2} x_1$ using the rewritten budget constraint,
- 3. rearranging, and
- 4. using the first order condition of utility maximization.

Solution

$$\begin{aligned} \partial_{p_2} v(p, y) &= \partial_{x_1} u(x) \cdot \partial_{p_2} x_1 + \partial_{x_2} u(x) \cdot \partial_{p_2} x_2 \\ &= \partial_{x_1} u(x) \cdot \left(-\frac{x_2}{p_1} - \partial_{p_2} x_2 \frac{p_2}{p_1} \right) + \partial_{x_2} u(x) \cdot \partial_{p_2} x_2 \\ &= -\partial_{x_1} u(x) \cdot \frac{x_2}{p_1} + \left(-\frac{\partial_{x_1} u(x)}{p_1} + \frac{\partial_{x_2} u(x)}{p_2} \right) \cdot p_2 \cdot \partial_{p_2} x_2 \\ &= -x_2 \cdot \frac{\partial_{x_1} u(x)}{p_1}. \end{aligned}$$

- Last step is key!
- Uses
 - 1. household utility maximization, and
 - 2. welfare = utility.
- ► ⇒ behavior changes "drop out."

The welfare effect of changing income

By a very similar calculation:

$$\begin{aligned} \partial_y v(p, y) &= \partial_{x_1} u(x) \cdot \partial_y x_1 + \partial_{x_2} u(x) \cdot \partial_y x_2 \\ &= \partial_{x_1} u(x) \cdot \left(-\frac{1}{p_1} - \partial_y x_2 \frac{p_2}{p_1} \right) + \partial_{x_2} u(x) \cdot \partial_y x_2 \\ &= -\frac{\partial_{x_1} u(x)}{p_1} + \left(-\frac{\partial_{x_1} u(x)}{p_1} + \frac{\partial_{x_2} u(x)}{p_2} \right) \cdot p_2 \cdot \partial_{p_2} x_2 \\ &= -\frac{\partial_{x_1} u(x)}{p_1}. \end{aligned}$$

Again: Behavior changes "drop out."

How does a change in prices compare to a change in income?

Equivalent variation:

$$EV = \frac{\partial_{p_2} v(p, y) \cdot dp_2}{\partial_y v(p, y)}$$
$$= \frac{-x_2 \cdot \frac{\partial_{x_1} u(x)}{p_1} \cdot dp_2}{-\frac{\partial_{x_1} u(x)}{p_1}}$$
$$= -x_2 \cdot dp_2.$$

Questions for you

Interpret this equation.

Takeaway

- Suppose the prices p_j of various goods change.
- The effect of this change on utility of a given individual *i* is the same as the effect of a change in her income of

$$dy_i = EV_i = -\sum_j x_{ij} dp_j.$$

The right hand side is a price index, using the individual's "consumption basket" x_i to weight price changes.

Aggregation and disaggregated reporting

- Equivalent variation measures utility changes expressed in monetary units.
- Can aggregate to social welfare, if we have welfare weights:

$$dSWF = \sum_{i} \omega_i \cdot EV_i$$

- ω_i measures value of an additional \$ for person *i*
- Could also report welfare changes in a disaggregated way:
 - 1. Average for various demographic groups, or
 - 2. average conditional on income.

-Nonparametric regression

Average conditional on income - nonparametric regression

We would like to estimate

E[EV|y].

- But (almost) nobody has exactly income y, since income is continuously distributed.
- This is a nonparametric regression problem.
- Various methods exist to estimate this.
- ► We discuss *k*-nearest neighbor regression.
- Deaton uses a very similar method, kernel regression.

- Nonparametric regression

k-nearest neighbor regression

- Suppose that for a given value y, you want to estimate E[EV|y].
- ► Find the k observations i₁,..., i_k with the smallest distance in income, |y_i - y|.
- Calculate the average.

This gives the k-nearest neighbor estimator,

$$\widehat{E}[EV|y] = \frac{1}{k} \sum_{j=1}^{k} EV_{i_j}.$$

- Can do this for any value *y*.
- Can also do this if we want to estimate conditional averages given additional variables, E[EV|y,z], say.

- Nonparametric regression

Variance-bias tradeoff

- We need to choose k.
- That choice involves a tradeoff between variance and bias.
- Larger k means
 - 1. smaller variance,
 - 2. but larger bias.

۱

Formally:

$$Var(\widehat{E}[EV|y]) = rac{1}{k} Var(EV|y)$$

Bias $= rac{1}{k} \sum_{j=1}^{k} (E[EV|y_i] - E[EV|y])$

The difference in the last term is generally larger, the further y_i is from y.